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1 Background

According to Alan Turing, a system, which probably looks pretty compli-

cate, can be described with simple mathmatical equation. In machine learn-

ing domain, the models can be usually interpreted with equations, and the

parameters of "equations" is what we want to learn. Usually, the parameter

we �nally get is an estimator of the real value. But how do we describe how

good the estimator is?

2 Bias and Variance

Let's start with the Estimator.

The parameter is a quantity of a real model e.g. the mean or the variance

of random variable, the parameter of a probability distribution, etc. An

estimator, according to Wikipedia is a rule for calculating an estimate of

parameter based on observed data. Because the estimator is calculated by
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a function of observed data, so the estimator is itself also random variable.

(This concept is also the main idea of Bayesian Model in machine learning).

Suppose we want to know a paramter θ, which can be estimated by a

sample set DS drawn from X. θ̂S(X) is denoted as the estimator of θ based
on observed data of random variable X. Let's denote x as a particular

obseved data X = x. Sampling is an approximation of the real world. So

it could happen that for some reasons the sample set doesn't represent the

real issuse very well. There are some important quanti�ed properties which

are helpful before we dive deeper.

2.1 Sampling Deviation

For a given sample X = x, the sampling deviation is denoted as:

d(x) = θ̂S(x)− E(θ̂S(X)) = θ̂S(x)− E(θ̂) (1)

where E(θ̂) is the expected value of the estimator. As mentioned, the esti-

mator is itself a random variable.

2.2 Estimator Bias

We randomly itteratively sample several times. Each time we give an esti-

mate of θ. The bias then can be denoted as:

Bias(θ̂) = E(θ̂)− θ = E((̂θ)− θ) = E(error) (2)

The distance btw. expected value of θ and the real theta being estimated.

Bias can describe how far the average of estimates be o�-target.

2.3 Estimator Variance

The expected value of the squared sampling deviation:

V ar(θ̂) = E(
√

((θ̂ − E(θ̂)))) (3)

It describes the scatterness or clusterness of the estimates.

2.4 Mean Square Error

The expected value of the squared error:

MSE(θ̂) = E[
√

((θ̂(X)− θ))] (4)

It is proven that MSE =
√
(Bias) + V ar
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3 *Estimator Variance

measures how �scatter� our estimator is to sampling, e.g. if we observe the

stock price every 100ms instead of every 10ms would the estimator change a

lot?

In statistics and machine learning, the bias�variance tradeo� is the

property of a set of predictive models whereby models with a lower bias

in parameter estimation have a higher variance of the parameter estimates

across samples, and vice versa. Ideally, we hope to simultaneously minimize

these two sources of error. However, the all-known delimma is that we can't

get the "whole" data at all. In oder to optimal the performance we have to

consider the trade-o� btw. bias and variance. Firsty, what do they actually

mean? According to Wikipedia:

� Bias is an error from erroneous assumptions in the learn-

ing algorithm. High bias can cause an algorithm to miss

the relevant relations between features and target outputs

(under�tting).

� Variance is an error from sensitivity to small �uctuations

in the training set. High variance can cause an algorithm

to model the random noise in the training data, rather than

the intended outputs(over�tting)
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